

Synchrotron radiation in the context of cosmic-ray propagation models

Elena ORLANDO (Stanford University)

The Radio Synchrotron Background Conference 19-21 July 2017 – Richmond

Reprocessed Haslam 408 MHz map of Remazeilles et al. (2014) Lambda website

Radio (and microwaves) as a tool to study cosmic rays and magnetic field

source

Cosmic ray

Earth

lena Orlando

Injection in interstellar medium

Elena Orlando - ICRC 2107

Injection in interstellar medium

Energydependent Diffusion and energy losses

Re-acceleration

source

Cosmic ray

Elena Orlando - ICRC 2107

and see

Injection in interstellar medium

Energydependent Diffusion and energy losses

Re-acceleration

Solar modulation measured

source

Hena Orlando - ICRC 2107

Solar modulation of CRs

Dependency with solar activity

Elena Orlando

CR Propagation: GALPROP

AROUND SINCE '98 http://galprop.stanford.edu

Officially used for COMPTEL, EGRET, Fermi LAT, Planck, Voyager, AMS-02

THE TEAM:

I. Moskalenko and A. Strong (original developers), G. Johannesson, E. Orlando, T. Porter, (A. Vladimirov)

It solves the transport equation for all the CR species

Ingredients (and source of uncertainty)

Probing interstellar CR spectrum and B-field

- Synchrotron spectral Index -> e⁻ spectral index
- Synchrotron Intensity -> B intensity and electron density
- e⁻ 0.5 20 GeV -> 20 MHz 100 GHz

Electron spectrum

Synchrotron spectum

Strong, Orlando and Jaffe 2011 A&A, 534, 54

No break

With break

Synchrotron spectral index measurements ...

... need of a break in interstellar e-

Radio and microwave modeling

Strong, Orlando and Jaffe 2011 A&A, 534, 54

Break in local interstellar electron spectrum from <2 to ~3 @ few GeV

- Injection spectrum < few GeV is harder than 1.6</p>
- Standard reacceleration models hard to reconcile with synchrotron.

Improvements in modeling

- polarization (Stokes I, U, Q)
- 3D B-field configuration: random + regular + anisotropic random components
- basic free-free emission model (based on NE2001)
- absorption

More info in: Orlando & Strong 2013 MNRAS 436, 2127. Upcoming results from this paper

Observations and B-fields

B-field model

Procedure

Additional component

Sensitivity to different parameters

CR source distribution

From pulsars, SNRs, OB stars, checked against gamma rays

Halo size

Synchrotron spatial modeling

Orlando & Strong 2013 MNRAS 436, 2127

Elena Orlando

Synchrotron spatial modeling

Orlando & Strong 2013 MNRAS 436, 2127

Sensitivity to halo size

See also Sun et al 2010 and Fornengo et al 2014 for different interpretations

Main results

High degeneracy among model parameters

Preference of:

- Flat CR source distribution in the outer Galaxy
- Halo height > 4 kpc

Anisotropic component of the magnetic field

Best model used separating Planck components.

The microwave sky

Planck 2015 results. X

Planck intermediate results. XLII

Data, d

Planck intermediate results. XLII

Under-prediction of polarization away from the plane for all the models

Planck polarization and Fermi Bubbles

Planck 2015 results. XXV

Fermi-LAT > 10 GeV from Ackermann et al 2014 ApJ,793,64 (dust subtracted) Planck polarization map

Voyager 1

In the interstellar space!

Cummings, Stone, Heikkila, Lal, Webber, Johannesson, Moskalenko, Orlando, and Porter, 2016 ApJ 831, 18

Produced synchrotron emission

CONSTRAINTS AT SYNCHRTRON CAN HELP ALSO IN MODELLING THE GAMMA-RAY SKY and VICEVERSA!

CR-induced diffuse emission of the Milky Way

Relation radio - microwaves - gamma

Relation: radio/microwaves – gamma rays

Fermi-LAT > 1 GeV

(Credits: NASA/DOE/Fermi LAT Coll. modified by Greiner et al ARAA 2015, 53-199)

Dust optical depth at 353 GHz from Planck and IRAS surveys (Planck Coll. 2014 A&A 564, A45) Elena Orlando

Fermi-LAT 30 – 80 MeV

(Fermi LAT coll. 2014 Fermi symposium, Orlando)

408 MHz (Haslam et al 1981)

Where are we now?

- More and more accurate propagation models we have taken the first steps (reality is much more complicated; also some residual structures need to be understood).
- Synergy with multi-frequency observations we have taken the first steps (Fermi, and next generation of MeV instruments will help)
- Increasing knowledge of the magnetic field models we have taken the first steps – (more rotation measurements? Magnetohydrodynamic simulations? SKA?)
- Need of all-sky surveys both in temperature and polarization covering the entire frequency band of the synchrotron emission up to 30 GHz (what do we have? Arcade, S-PASS, C-BASS, SKA, LWA1, what else?)